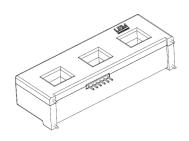


Current Transducer HTT 25 ... 75-P

For the electronic measurement of currents: DC, AC, pulsed..., with galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

Electrical data

		Primary nomina current rms	•	current, ng range	
	Type	$\mathbf{I}_{PN}(A)$	I _{PM}	(A)	
	HTT 25-P	25	7	5	
	HTT 50-P	50	1	50	
	HTT 75-P	75	2:	25	
\mathbf{V}_{OUT}	Output voltage (Ar	nalog) @ I _{PN} , R _i =1	$0 \text{ k}\Omega, T_{\Delta}=25^{\circ}\text{C}$ ±	4	V
R _{OUT}	Output internal res	sistance a	ipprox. 1	00	Ω
R,	Load resistance		≥	10	$k\Omega$
V _C	Supply voltage (±	5%)	±	1215	V
I _c	Current consumpt	ion	≤	40	mA


Accuracy - Dynamic performance data

X	Accuracy @ I_{PN} , $T_A = 25^{\circ}C$, without offset			
	HTT 25-P	\pm 3.6		%
	HTT 50-P & HTT 75-P	±2.5		%
\mathcal{E}_{L}	Linearity error (0 ± I _{PN})	± 1		% of I _{PN}
\mathbf{V}_{OE}	Electrical offset voltage @ $I_p = 0$, $T_A = 25$ °C	Тур:	± 50	mV
		Max:	± 100	mV
V_{OM}	Magnetic offset voltage \bigcirc $I_P = 0$,	Тур:	± 20	mV
	after an overload of 3 x I_{PN}	Max:	± 30	mV
t,	Response time @ 90 % of I _{PN}	≤ 10		μs
di/dt	di/dt accurately followed	100		A/µs
TCV	Temperature coefficient of V _{OE}	2		mV/°C
	Temperature coefficient of V _{OUT}	4		mV/°C
BW	Frequency bandwidth (-3 dB)	DC	10	kHz

General data

T_{A}	Ambient operating temperature	- 10 + 75	°C
T _s	Ambient storage temperature	- 15 + 85	$^{\circ}\text{C}$
m	Mass	67	g
	Standards	EN 50178: 1997	
	UL94 Classification	V0	

$I_{PN} = 25 \dots 75 A$

Features

- Open loop transducer technology using Hall effect
- PCB mounting
- · Galvanic isolation between the primary and secondary circuit
- · Extended measuring range $(3 \times I_{PN})$
- Three measurements in one device
- · Isolation voltage: 2.5 kV rms / 50 Hz /1 min.

Advantages

- · Only one design for wide current ratings range
- · Small size and space saving
- Easy mounting
- Through-hole, no insertion losses.

Application

- · AC variable speed drives and servo motor drives
- Power supplies for welding application
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Static converters for DC motor drives.

Application domain

• Industrial.

Current Transducer HTT 25 ... 75-P

Is	olation characteristics		
$oldsymbol{\hat{V}}_{w}^{d}$ $oldsymbol{\hat{V}}_{e}$	Rms voltage for AC isolation test, 50 Hz, 1 min Impulse withstand voltage 1.2/50 us Rms voltage for partial discharge extinction @ 10pC	2.5 > 6 > 1.5	kV kV kV
dCp dCl CTI	Creepage distance 1) Clearance distance 2) Comparative Tracking Index (Group III a)	7.7 7.7 225	mm mm V

Application examples

According to EN 50178 and IEC 61010-1 standards and following conditions:

- Over voltage category OV 3
- Pollution degree PD2
- Non-uniform field

	EN 50178	IEC 61010-1
dCp, dCl, $\hat{\mathbf{v}}_{w}$	Rated isolation voltage	Nominal voltage
Single isolation	600 V	600 V
Reinforced isolation	300 V	300 V

Notes:

- 1) On housing from pin to primary V, hole
- ²⁾ On housing from pin to primary V_1 hole.

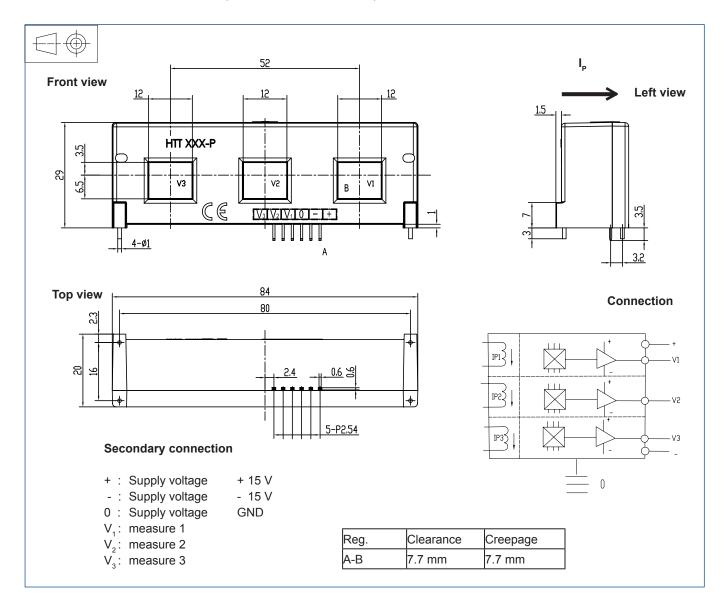
Safety

This transducer must be used in electric/electronic equipment with respect to applicable standards and safety requirements in accordance with the manufacturer's operating instructions.

Caution, risk of electrical shock

When operating the transducer, certain parts of the module can carry hazardous voltage (eg. primary busbar, power supply).

Ignoring this warning can lead to injury and/or cause serious damage.


This transducer is a build-in device, whose conducting parts must be inaccessible after installation.

A protective housing or additional shield could be used.

Main supply must be able to be disconnected.

Dimensions HTT 25 ... 75-P (in mm. 1 mm = 0.0394 inch)

Mechanical characteristics

• General tolerance

• Primary through-hole

· Connection of secondary

 Recommended PCB holes for Secondary connections
 Fixing pins ± 0.2 mm 12 x 10 mm

L-PIN 0.6 X 0.6 mm

1.0 mm

4 x 1.2 mm

Remarks

- Terminals V₁,V₂,V₃ obtain the same voltage, when the primary current flows in the direction of arrow.
- The temperature of the primary busbar should not exceed 90°C.
- V_{ουτ} is positive when I_P flows in the direction of the arrow.
- Dynamic performances (di/dt and response time) are best with a single bar completely filling the primary hole.